A Two-Stage Approach for Bag Detection in Pedestrian Images
نویسندگان
چکیده
Bag detection in pedestrian images is a very practical visual surveillance problem. It is challenging because bag appearance may vary greatly. In this paper, we propose a novel two-stage approach for bag detection in pedestrian images. Firstly, we utilize two stripe vocabulary forests to check whether a pedestrian is with a bag. Secondly, we locate the bag location by ranking the generated bottom-up region proposals. The ranker is learned with a convolutional neural network (CNN). Experiments are performed on a subset of CUHK person re-identification dataset that show the effectiveness of our approach for bag detection in pedestrian images. Although developed for a specific problem, our approach could be applied to detect other carrying objects in pedestrian images.
منابع مشابه
Pedestrian Detection in Infrared Outdoor Images Based on Atmospheric Situation Estimation
Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric situations. In this paper an efficient method is proposed for detecting pedestrians in ...
متن کاملCrowded Pedestrian Detection and Density Estimation by Visual Words Analysis
Crowded pedestrian detection and density estimation are very useful and important under transportation environment. In this paper, we present a novel method for crowded pedestrian detection and density estimation through a weighting scheme of bag of visual words model which characterizes both the weight and the relative spatial arrangement aspects of visual words in depicting an image. Firstly,...
متن کاملPedestrian Detection and Tracking from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery
Driven by the prominent thermal signature of humans and following the growing availability of unmanned aerial vehicles (UAVs), more and more research efforts have been focusing on the detection and tracking of pedestrians using thermal infrared images recorded from UAVs. However, pedestrian detection and tracking from the thermal images obtained from UAVs pose many challenges due to the low-res...
متن کاملPedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine
Pedestrians are the vulnerable participants in transportation system when crashes happen. It is important to detect pedestrian efficiently and accurately in many computer vision applications, such as intelligent transportation systems (ITSs) and safety driving assistant systems (SDASs). This paper proposes a two-stage pedestrian detection method based on machine vision. In the first stage, AdaB...
متن کاملA Visual Words Selection Strategy for Pedestrian Detection and Analysis of the Feature Points Distribution
An effective and efficient visual word selection method based on Bag-of-features (BoF), which can be applied to the pedestrian detection problem, is proposed in this paper. We first calculate the difference in the total appearance frequency of each visual word in pedestrian and non-pedestrian images. Visual words that exhibit greater absolute values are more efficient for pedestrian detection, ...
متن کامل